Tutorial 1

Advanced Graph Theory

Degree of a Vertex: The degree of a vertex is defined as the number of edges incident on it.
What about loop edges?

1. Prove or disprove:
1.1 If every vertex of a simple graph G has a degree 2 , then G is a cycle.
1.2 If every vertex of a connected simple graph G has a degree 2 , then G is a cycle.
1.3 The complement of a simple disconnected graph must be connected.
2. Prove by induction, that the cycle $C_{n} ; n=2 k+1, k \geq 0$, can never be a sub-graph of $K_{r, s}$.

3. Definition

Peterson Graph

The Petersen graph is the simple graph whose vertices are the 2 -element subsets of a 5 -element set and whole edges are the pairs of disjoint 2-element subsets.

Determine whether the Petersen graph is bipartite, and find the size of its largest independent set. (Hint: Use the results learned in questions already solved) Why do you say that it is the largest independent set?
4. Given a connected simple graph G and $v \in V(G)$; prove that v has a neighbor in every component of $G-v$. Can you then conclude that no graph has a cut-vertex of degree 1 ?
5. Let W be a closed walk of length atleast 1 that does not contain a cycle. Prove that some edge of W repeats immediately (once in each direction).
6. Let v be a cut-vertex of a simple graph G. Prove that $\bar{G}-v$ is connected.

